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ON ThE PER11JRBATION OF
P~UJDO-INVERSES, PROJECTIONS AND 

:LINEAR LEAST SQUARES PROBLF1IE

C. W. Stewart**

1. Introdu ction

The pseudo-invers e (or Moore-Penro se generalized inverse) of a matrix

A may be defined as the unique matrix At satisfy ing the following condi-
tions (due to Penrose (1955)1:

(l . la) AtAAt 
— At

(l.lb) ~JI
•t•
A — A

(1.]c) (Mt)H * Mt

(1.ld) (AtA)H - AtA

The pseudo-inverse and its generalizations have been extensively investi-

gated and widely applied. Ck~e reason for this interest in the pseudo-
inverse is that it pennits the succinct expression of some important
geometric constructions in n-dimensional space. This paper will be con-
cerned with the pseudo - inverse and two related geometric constructions :
the orthogonal proj ection onto a subspace and the linear least squares
probl.n.

The orthogo nal projection onto a subspace X is the unique Hermitian ,
idatq otent matrix P whose co1tim~ space [denoted by R (P) ] is .X . It follows
“This work was supported in part by the Office of Naval Research unde r
Contrac t No. N0014-67-A-0128-0018.
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from (ic) that the matrix

- Mt

is Hermitian and from (ib) that is idempotent and R(P A) - RCA) .

Hence 
~A is the orthogonal projection onto RCA) . A similar arg isnent

sJ~*,ws that

(1.2) RA AtA

is the projection onto R(AH), the row space of A.

The second construction is the solution of the linear least squares

probl em of choosing a vector x to minimize

(1.3) p(x) — IIb-Ax H 2

where b is a fixed vector and 11 112 de~~tes the usual Euclidean norm .

The solutions of this problem are given by

(1.4) x — Atb + (I
~
RA)z

where z is arbitrary . When A has full coltrin rank , RA - I and the

solution x - A~b is unique. Otherwise , it is easily verified from (1.1)

and (1 . 2) that Atb is orthogonal to (I- RA) z , so that by the Pythagorean

theorem

HxII~ — j IAt bII~ + II (I RA)zII~ 
.

It follows that x - Atb is the unique solution of (1.3) that has minbiv~1

norm.
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The object of this paper is to describe the effects of perturbations

in A on At , on 
~A and on A~b; i.e., on the pseudo- inverse , on the

projection onto R(A) , and on the solution of the linear least squares

problem. Such descriptions are important for three reasons. First the

results are useful mathematical tools. Second , in numerical applications

the elements of A will seldom be known exactly, and it is necessary to

have bounds on the effects of the uncertainties in A. Finally many

nunerical processes for computing projections and least squares solutions

behave as if exact computations had been performed on a perturbed matrix

A + E, where E is a small matrix whose size depends on the algorithm

and the arithmetic used in its execution .

We shall be concerned with three kinds of results : per tu rbatio n

bounds , asympto t ic expressions , and derivatives . The perturbation bounds

are needed in the applications mentioned above. Asymptotic expressions

and derivatives are useful computational tools when the perturbation is

actually known. Moreover they can be used to check the sharpness of the

perturbation bounds . Not surprising ly it is rather difficul t to obtain

a reasonably sharp pertur bation bound that tells the complete story of the

effects of the perturbatio ns . Asymptotic forms and derivatives are easier

to come by.

In order to make this survey reasonably self-contained , we begin in

§2 with a review of the necessary background . In §3 we develop the pertur-

bation theory for the pseudo-inverse, in §4 for the projection 
~A’ 

and

in §5 for the least squares solution Atb .

— _ _______ J
____ _____ .

-A



- 4 -

Notes and references. For background on the generalized inverse

see the books by Ben-I srae l and Greville (1974) , Boullion and (~iell (1971) ,

and Rao and Mitra (1971). The expression (1.1) is due to Penrose (1955 ,

1956) whose papers initiated the current interest in the pseudo-inverse.

Many articles on perturbation theory for pseudo-inverses and related

problems have appeared in the literature. To date the nest complete

survey of the problem has been given by Wedin (1973) . In addition to

collecting and unifying earlier material, this paper will present some

new results.

2. Preliminaries

Notation. Throughout this paper we shall use the notationa l conven-

t ions of Householder (1964) . Specifically, matrices are denoted by upper

case Latin and Greek letters, vectors by lower case Latin letters , and

scalars by lower case Greek letters. The symbol C denotes the set of

complex numbers, ~fl the set of complex n-vectors, and ~~~~~ the set of

complex m x n matrices . The matrix AH is the conjugate transp ose of A.

The coluimi space of A is denoted by R(A), and its orthogonal complement

by R(A)~.

We shall be concerned with a fixed matrix A ( (!T~~~ with

rank ( A ) — r .

The matrix E E will denote a perturbation of A and we shall set

B - A + E

Is - - - - - - --- -~
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Since we are concerned with the geometry of ~fl, we shall be at some

pains to cast our results in such a way that they are not affected by uni-

tary transformations (cf. the section on unitarily invariant norms below).

We may use this fact to transform our perturbation problems into a simpler

form. Specifical ly, let U = (U1,U2) K be a unitary matrix with

R(1J1) - R(A) and let V — (V1,V2) be a unitary matrix with R(V1) R(AH).

Then ~ AV has the form

fA ii O
(2.1) UHAV —

o

where ( ~rxr ~ nonsingular . We shall partition UHEV and UHBV con-

formally with tI~AV:

E E 2 \
UHEV _ 

U 1

E21 E22 /

— 
(B 11 B12 ~ 

— 
(A 11 

+ E11 E12

\ B21 B22 / \ E21 E22

These forms will be called reduced forms of the matrices A , B , and E, and

in the sequel we shall often assume that the matrices are in reduced form.

In this case, the pseudo-inverse is given by

f - i  
~

(2.2) A — (
o

Is - - 
_________________________________________
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Singular values. It is a well-known result that in the reduced form

(2.1) the matric es U1 and V1 may be chosen so that

L diag (a1 ,a2,. . . ‘°r~
where

a
2 ~ ... °r >0

This reduced form is called the singular value decomposition of the matrix

A, and the numbers are called the singular values of A. From the

relation (2.2) and the fact that (I1~AV)t V~A~U, it follows that

/ ~At = V (
o

The i-th singular value of a matrix A, which will be denoted by

can be written in the form

(2.3) a1(A) — sup inf IIAxII2, (i — i,2,...,n)
dim (X)-i xEX

11x11 2 l
where

(2.4) Hy H 2 — v9ç

is the usual Euclidean norm. This characterization provides a natural

convention for numbering the singular values of a rectangular matrix: v

A K ~~~ has n singular values of which n-r are zero ; AH has m

singular values of which m-r are zero. The nonzero singular values of
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A and AH are Uie same.

Two inequalities that we shall need in the sequel follow fairly

directly from (2.3). They are

~r~(A) - a1(E) ~ a~(A) ~ a~(A) + a1(E)

and

(2.5) o~ (AC) S a~ ~A) a1 (C) , a~ (A) a1 (C)

Unitarily invariant matrix norms. A norm on C~
”>
~ is a function

-
~~ R that satisfies the conditions

1. A ,’O~~~~IfA Il > 0 ,

(2.6) 2. IloAll — ki hA D

3. JJA+BJ~ 5 hJA J~ ‘ hiBhi

A norm I’ll is unitarily invariant if

IIuHAVII * hi All

for all unitary matrices U and V. The perturbation bounds in this paper

will be cast in terms of unitarily invariant norms , whose properties will now

be described.

Let U and V be the unitary matrices realizing the singular value
decomposition of the matrix A K ~~~~ Then for any wiitariiy invariant norm

D N m,n

Is
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0

IIAIim,n - hhuI
~ ’Ihm,n -

\ 0 0 m,n

Thus IIADm,n is a function of the singul ar values of A, say

(2.7) hhAlhm,n —

It follows from (2.6) that 
~m,n regarded as a function on R~

1 is a

norm. Since the interchange of t~~ rows or ti~~ columns of a matrix is a

unitary transformation of the matrix, the function 
~m n  is sminetric in

its arguments a1,a2,.. . ~~~ It can also be shown that is nondecreas-

ing in the sense that

(2.9) 0 s a~ s aj (il ,2,...,n) .~~ ~~~~~~~~~~ ~a~) s

We shall say that the norm 1 • 11 m ,n is generated by 
~~~~

An important norm is the spectral norm II 11 2 generated by the function

~
p defined by

This norm can also be defined by the equation

(2.10) DAD 2 — sup hlAxhI 2DxhI 2=~
where 11 11 2 on the right denotes the Euclidean norm defined by (2.4).

The spectral norm satisfies an important consistency relation with other

wiitarily invariant norms. If 
~~ is a unitarily invariant norm generated

Is -
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by p, then it follows from (2.5 ) and (2.9) that

(2.11) IICDII 5 IICII2 IIDII , hlCIh IIDII 2

whenever the product CD is defined. In particular 1111 2 is consistent

with itself over matrices and vectors of all dimensions.

A second example of a unitari ly invariant norm is the Frobenius norm

generated by the function

2 2 2 1/2
— (a1+a 2

+...+a~)

—n’xnFor any matrix A E C

lhA Ih~ — I J a~~ I trace (AHA)
i—i 3— 1 ~

The Frobenius norm satisfies the consistency relation

(ICDJI F 5 I IC !I FII D II F

Since we shall be dealing with matrices of varying dimensions, we shall

work with a family of unitarily invariant norms defined on U (
~~

‘1. It is
in ,n=1

important that the individual norms so defined interact with one another

properly. Accordingly, we make the following definition.

Definition 2.1. Let Ih 11 : U C~
’
~’~ -‘ fi be a family of unitariiy

invariant norms. Then Jl • JI is uniformly generated if there is a syninetric

function p, defined for all infinite sequences with only a finite number

of nonzero terms, such that

-
.4:- - -—-—-— — - - .-

~~~~~~~
-
~~~~~~ 

. —.- ..- - —----.- - - ————-— 
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HAD —

for all A K ~~~~ It is normalized if

li xhi — hlx lh 2

for any vector x.

The function p in the above definition mist satisfy the conditions

(2.6). Any norm defined by such a function can be normalized . Indeed we have

hIxIh p(a1(x) , 0,0 ,...) = cp (bf xfh 2,0,0,...)

from which it follows that htx H = ~hIxll 2 for some constant ~ that is inde-

pendent of the dimension of x. The function then generates the

normalized family of norms .

A uniformly generated family of norms has some nice properties . First ,

since the nonzero singular values of a matrix and its conjugate transpose are

the same, we have

JIA1
~JJ =

Second, if a matrix is bordered by zero matrices, its norm remains unchanged ;

i.e.,

/ 0  0 0

(2.12) A — ( 0 A 0

0 0 0

In part icular if A is In reduced form , then



- 1 1 -

ii~lh ibA.1~ ~ib

and

hA t ii = IIA~ II

A third property is that if hI .iI is normalized then

(2.13) hAl l 2 5 JA~

In fact from (2.11) and the fact that hix il = HxI1 2, we have

(2.14) IhAx il 2 = hiAx hi ~ h Ail lxii 2

for all x. But by (2.10) hAll 2 is the smallest number for which (2.14)

holds, from which (2.13) follows. A trivial corollary of (2.11) and (2.14)

is that ih hi is consistent:

II C DI1 ~ il Chl hl Dhl

Finally we observe that

(2.15) Vx ilOchh 2 s hi flx hh2 ~~~ lh CIb ~ JIDII .

To prove this implication note that by (2.3) the hypothesis implies that

~ 
(C) s a~ (D). Hence the inequality II CII s ii Dli follows from (2. 9).

In the sequel 11 ii will always refer to a uniformly generated ,

normalized , unitari ly invarian t norm.

- :
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Perturbation of matrix inverses. We shall later need some results

on the inverses of perturbations of nonsingular matrices. These are

suninarized in the following theorem.

Theorem 2.2. Let A be nonsingular and suppose that

flA 11 2 11 hi

Then A + E is nonsingular ,

ll (A+EY ~

and

(2.16) hh (A+E)~~-A~ Jl 5 :~~ .f~ji

where

(2.17) K = hlAlI hlA~ h h 2

and

11’ l - K . f f ~{f> 0.

In most applications of Theorem 2.2 the number y is insignifica ntly

different from unity. The number K is usually called the condition number

of A (with respect to inversion). It measures the sensitivity of the

inverse of A to perturbations in A. Similarly defined quantities will

play similar roles in the perturbation theory for the pseudo-inverse.

Is - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Projections. We have already observed that the ortho gonal projections

and RA onto the column space and the row space of A can be expressed

in terms of the pseudo-inverse. The projection Onto R (A)~ will be denoted

by

~

Likewise

.J. iRA~~ ~~
RA

will denote the projection onto R(AH) ~

When A is in reduced form , its projec t ions can be easily written out:

hr o\

0 0

1~r ~\
J E C ’1x’1 .

\o 0/

It follows that

hlA~~hl

H
IIPAERAII - bbE1i Ih ibPAE4hl = ilE 12bi

hI P~ERAlh — llE21lh hbP~ER~lh — llE22 hI
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These identities enable us to pass from results for the reduced form to
general results stated in terms of projections of A and E.

We shall need some properties of norms of projections later . These

are suninarized in the following theorem.

Theorem 2.3. For any A and B the following statements are true .

1. If rank (A) — rank (B) , then the singular values of 
~~~ 

and

P~P~ are the same so that

.L _
-

Ibreover the nonzero singular values ~
2 of 

~A~B 
correspond

to pairs ±a of eigenvalues of 
~B 

- 

~A’ ~ 
that

= iiPAI’~lh 2 = II PBP~Il 2

2. If ‘~B~ A 11 2 < ~ , then rank (A) = rank (B) .

3. If rank (B) ~ rank (A) , then

lIPBP~hb 
~ 

lh P~P~h h

Proof. Proofs of parts one and two are readily found in the literature.
For part three write 

~B 
- + P2 where rank (P1) rank (A) and 

~A~2 
- 0

(i.e. R(P 2) is orthogonal to R(A)) .  Then

HPAP~II — lIPA (i
~
P1-P2)hI — 

~~~~~~~ 
— hiP1P~1h

the last equality following from part 1. Now for any x

- -
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IIP 1P~x Ih s IIPBP~xII

and the result follows from (2.15). o

When B - A + E, we can estimate IiPBP~bh in terms of E.

Theorem 2.4. The product 
~B~A can be written in the form

(2.18) 
~B”A 

(Bt)HRBEHP~

Hence

(2.19) IIPBP~lI ~ ih~ b~llElh

and if rank (A) = rank (B) , then

(2.20) IlPBP~ll s mm {h b Bt h~, IlA~i~} h E ll

Proof. We have

1’B”A ~
‘
~
‘A (Bt )HBHP~

= (Bt)H(A+E)HP~~= (Bt)HEHP~

- (Bt)HBH(Bt)HEHP~ - (Bt)HRBE
hlP~

which establishes (2.18). The inequality (2.19) follows upon taking norms

in (2.18). Finally (2 . 20) follows from part I of Theorem 2.3. a

Theorems 2.3 and 2.4 have obvious analogues for other combinations of

projectors (e.g. R
~
RA - ~A

tEI~ ) .  In the sequel a reference to these theorems

will also cover any trivial variants.
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The case when < 1 will be particularly important later.

We have seen in part 2 of Theorem 2.3 that in this case rank (A) = rank (B).

However more is true : no vector in R(A) can be orthogonal to R(B) and vice
versa. For suppose that x ~ 0 satisfies PAX - x and PBX = 0. Then
(PB~PA)x - -x , which implies that ‘~B~ A 11 2 ~ 1. Conversely if ‘~B~~A 1 2
then there is a vector in R (A) or R (B) that is orthogonal to R (B) or

RCA) . To see this, note that by Theoran 2.3.1 there is a vector x

such that (PB-PA)x - x. If PAX - 0 then PBX = x which shows tha t x K R(B)

and x E R (A)~. If, on the other hand, PAx ~ 0, then since PAx = - (I - P8) x
we have PB (PAx) = 0, which shows that PAx E R (A) and PAX K R (B)

L
.

Because of the above considerations, we shall say that RCA) and R (B)

are acute whenever 11
~B~ A 11 2 < 1. The following theorem gives sufficient

conditions for R (A) and R (B) to be acute.

Theorem 2.5. If rank (A) rank (B) and

tIIA D 2~~A~ AD 2 < 1

then R (A) and R(B) are acute.

Proof. We shall use the reduced form. From Theorem 2.2 it follows

that B11 - A11 + E11 nonsingular. Hence

IfBi1\
rank J rank (A) - rank (B) .

L\ E 2l/
It follows that

Is - -_ _ _ _  - -- -- - -----
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(~ B~1\
R (B)— R l — R

L E21) E21Bj~

&lt

R ( A ) — R  
0

from which it is easily seen that no vector in R (A) can be orthogonal to

R(B) and vice versa , a

Theorem 2.4 shows that if rank (A) rank (B) the spaces R (A) and

R(B) are acute whenever E is sufficiently small. For this reason we shall

say that B is an acute perturbation of A if A and B satisfy the

hypotheses of Theorem 2.4. The reader should remember that the statement

“B is an acute perturbation of A” is stro nger than the statement “R(B) and

R(A) are acute. ”

Notes and References. The properties of singular values are well known .

See Stewart (1973) for an introduction and Gohberg and Krein (1965) for a

more detailed treatment in an infinite dimensional setting.

Von Neumann (1937) was the first to prove that unitarily invariant

norms can be written as a function of singular values (the func t ion 
~m,n

in (2.7) is usually called a symm etric gauge function) . Systemat ic treat-

ments of imitari ly invariant norms may be found in Mirsk y (1960) and Gohberg

and ICrein (1965).

Is



- 18 -

The treatment of unitarily invariant norms in finite dimensional

spaces has often been a little sloppy. In infinite dimensional

settings there is usually only one space and one generating function, and

the same is true in a finite dimensional setting when one is concerned with

square matrices. However, when one cons iders rectangular matrices with

varying dimensions , different norms can be used for different d imens ions ,

and there is no reason why these norms should interact nicely. How bad

things can get is illustrated by the family or norms ii defined for

A E ~ fl1Xfl by

DAD ~ h All 2

This family is unitarily invariant and consistent , but hhAF
~ll ~ h Ail , unless

A is squa re , and the relation (2. 15) does not hold in general . Def inition

2.1 represents a return to the simplicity of the infinite dimensional case.

Theorem 2.2 is classical and is usually proved by an appeal to the

Neumann series representation (I-A) 1 = I + A + A2 + ... . Wilkinson (1965)

gives a proo f that does not use series and discusses at some length the

notion of condition number . The result is usually proved under the assump tion

that 11 111 - 1; however, the proofs can be extended to establish the result for

any consistent norm.

The results in Theorem 2.3 are well known to people who work closely

with orthogonal projectors (for proofs see Afriat (1957) or Wedin (1969)).

The decomposition in Theorem 2.3 was established in a slightly weaker form

by Wedin (1973) . In some cases, when E is small, RB will be near

— —

Is
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and the approximation 1IPAERB II ~ lhE 2~h will be more realistic in (2.19).

The number ‘1~B~~A
t1 2 is closely related to various measures of separa-

tion between subspaces. See Kato (1966) and especially J~vis and Kahan

(1970) where further references may be found. Theorem 2.4 , with II PAERA II
replaced by HEll , is proved by Wedin (1973). The term “acute” ordinarily

refers to the angle subtended by two line segments, not to the segments them-

selves , and it is technically misapplied when subspaces are said to the

acute. But this usage will cause no confusion and it is better than the ugly

phrase “in the acute case. ” The term “acute perturbation ” is new .

3. The Pseudo-Inverse

In this section we shall consider the probl em of bounding hb B t~ At hi
in terms of hE ll . We shall obtain three basic theorems: one for when

rank (A) ~4 rank (B) , one for when rank (A) = rank (B) , and one for when

B is an acute perturbation of A. All these theorems are based on expres-

sions for Bt , which also yield asymptotic expressions for Bt and expres-

sions for the derivative of At.

Lower bounds. Before proceeding to obtain bounds on hb B t~ At hi ,  we
shall show how bad things can be by deriving lower bounds.

Theorem 3.1. If R (A) and R (B) are not acute , then

(3.1) hhBt _At 1l 2 > l/hhEh~2

If further rank (B) ~ rank (A) , then

Is
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(3.2) lhB t hh 2 ~ 1/ h Ell 2

Proof. Suppose for definiteness that rank (B) ~ rank (A) . Then

there is a vector y K R (B) with hh y h h 2 = 1 such that y K R (A)~. Thus

yHy - 
~~~~ 

yHBBty — yH (A+E) B
t
y

yFL~ty ~ ~~~~~~~~

which shows that hh B ty hl 2, and hence hlBt hh 2 is not less than l/ihElP 2. From

this and the fact that P~y - AtPAy - 0 we have

~ ~J~ty~2 ~ hl (Bt _At )y h i 2 5 hfB~ A~ib . a

Theorem 3.1 ShOWS that the pseudo-inverse of a general matrix is not

a continuous function of its elements, unless the class of perturbations

is restricted. It also says that if two nearby matrices do not have acute

column spaces, then one of then at least nvst have a large pseudo-inverse.

t’breover if they are of the same rank, then both of them mu st have large

pseudo- inverses.

A decauiçosition of Bt - At . In spite of the negative results in

Theorem 3.1 it is possible to obtain bounds on hb Bt~A
t

hl in the general case,

although these bounds need not remain finite as B approaches A. The

basis for obtaining such bounds is contained in the following theorem .

Theorem 3.2. The following two decompositions of Bt - At are valid:

-
Is



- 21 -

(3.3) Bt - At = ~Bt PB~ AA 
+ Bt PBP~ - R~

RAA
t

(3.4) Bt - At = ~BtPBEI~AAt 
+ (BH

B)
tRBEHP~ - RBE

HPA (M)

Proof. Both expressions can be verified directl y by replac ing E

with B - A, replacing the proj ectors by their expressions in terms of

pseudo-inverses , and simplifying , a

It should be noted that (3.3) can be obtained directly from (3.2)

by using Theorem 2.4 to express 
~B~A 

and R~RA 
in terms of E.

The general theorem. We are now in a position to prove the general
t ttheorem bounding lB -A h i .

Theorem 3.3. For any A and B with B = A + E,

hh B t _At ll s ~ max {hb A ~h~, hh Bt hl ~} h E ll

where ~i is given in the following table:

h II arbitrary spectral Frobenius

l+V~3

Proof. The proof is a slight modification of the proof given by Wedin

(1973). We shall give only the proof for the Frobenius norm.

Suppose for definiteness rank (B) s rank (A) . Let F1
,F2, and F3

denote the three terms on the right-hand side of (3.3) . Then the column

spaces of F1 and are orthogonal to the column space of F3. Hence

Is 
__________________________________________________________
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(3.5) hl B t~At ii ~ a ilF 1+F 2 i b~ + hIF3II~

Now since F1 + F2 Bt(PBDAtPA+PBP~),

hIF1+F2hb~ ~ hlB
~~

(ilPBEA
tPA hl~+hl PBP.~)l~

)

But from Theorems 2.4 and 2.5

IIPBEAPA II F + iIP BP~h l~

S bb P~EA~ + hh P ~PA lh ~

= IIPBEA
~ 

+ hi P~EA~

= hiEA~~ s IE hi~hbAthh~

Hence

(3.6) bFl+F21I F ~ JAthb 2ihBtli2hfEh! F

Also from Theorem 2. 5

hh F 3i h F = hAt h p 2h~R~RA ilF = hb A~i h 2 hh RAR~hi F
(3.7)

— hh At ib 2 hh A tER~b l F ~ hA l~i l E hI F ~

and the result follows on combini ng (3.3) , (3 .6) , and (3.7). Since the

final bound is symmetric in A and B, it also holds when rank (B) ~ rank (A). a

It should be noted that these bounds do not imply that ~B
t
~A
thl is small

when h Ell is small, since Bt may grow unboundedly as E approaches zero .

Is - -
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The case rank (A) = rank (B). When A and B have the same rank ,

we can strengthen Theorem 3.3 in two ways. First, we can replace the term

max {hIAthi~, lJB~hI~} with the product hl A hl 2 hh B hl 2 . Second we can distinguish

more cases for the constant ~ . In the following theorem recall that

A with m ~ n.

Theorem 3.4. If rank (A) = rank (B) , then

(3.8) hl B t _At i b s ~hiAthb 2liB~ii2hh E Ih

where ii is given in the following table.

Arbitrary Spectral Frobenius

rank (A) < min(in,n) 3 (1+ v’~)/2

rank (A) = min(m,n)
m~~ n 2 ~J2 1

rank (A)=m=n 1 1 1

The proof of this theorem may be found in Wediri (1973) . The bound (3.8)

may be recast in the form

(3 9) hl B~-A~ ~~

where

K = hl A hhhh A t lb 2

In this form the result is almost analogous to the bound (2.16) for the

inverse in Theorem 2.2. The bound (3.9) also implies that as E approaches

Is - _ _ _ _
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zero , the relat ive error in Bt approaches zero, which further implies

that Bt approaches At . Remembering , on the other hand , that if

rank (B) ~‘ rank (A) then R(A) and R (B) cannot be acute , we have from

Theorem 3.1 the following corolla ry of Theorem 3 .4 .

Corollary 3.5. A necessary and sufficient condition that

-1- 1’lim B = A
B-.A

is that rank (B) = rank (A) as B approaches A.

Acute Perturbations. It is evident from the proofs of Theorems 3.3

and 3.4 that we have given away much in deriving the bounds. In particular ,

if B is a small acute perturbation of A then and 
~B are nearly

equal , and the same is true of RA and RB. Thus it follows from (3.4)

that B
t 

- At can be decomposed into three terms - -one essentially depending

on PAERA , one on PAER~, and one on P~ER~ . However , this does not tell the

whole story; for we shall ShOW that the dependency of Bt - At on P.~ERt

and 
~A~ A is bounded , no matter how large these projections may be.

In order to state our theorems concisely, we must first introduce some

additiona l notation . Let h I ‘ ii  be generated by p and for any F ( ~kxr

(k > r) define

I 
~~~~~ 

c~ (F)
(3.10) ~~(F) - 

~ L [ l ~~~F)]h f2 , . . . ,  
[l+C~(F)]h /2]

Is
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The function ~i is not a norm; however, it has some useful properties .

First , from (2.5)  and the monotonicity of p ,

~~GF) s 4’(IIGII2F) s ~~lJG bbF)

Second , since for a ? 1

(l+ acT2)~
’2 — 

(1+~~)L”2

we have

a ~ l~~~~~fr (aF) 5 a~~(F)

For small F, 4~ (F) is asymptotic to Il F h l:

= hF !! + o(llFil )

For large F , is bounded:

~(F) s

Finally, for the spectral norm

I F I ~
(l+ F ’~~~~~

”2

Xir first result concerns a rather special matrix.

Le~m~a 3.6 .  The matrix

( I



- 26 -

satisfies

/ 1\ t
(3.11) ( J ~~1

2

and

(3.12) - (I O)~ =

Proo f. It is easily verified that

/1\t

(3.13) 1 ) = (I+F
H
F)

l(I FH )

whose singular values are

< 1
[l+a~(F)J

2 —

from which (3.11) follows. Also if

/ \t
G — (  I - (I 0 ) ,

then

— I - (I+F11
F)

1

It follows that the singular values of G are given by

which establishes (3.12). a
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The main result is based on an explicit representation of Bt . We

shall work with the reduced forms of A and B.

Theorem 3.7.  Let B be an acute perturbation of A. Then

/ i ~~
(3.14) B

t 
— (I F l2 ) tB~~

( )
21

where

— -1 _ -lF 21 
— E21B11 , F 12 

— B11E12

Proof. As in the proof of Theorem 3.4, we have

R(B) =

L\E21/

Thus the columns of

( E 12

\ E 22

can be expressed as a linear combination of the columns of

(all
\E 21

Since B11(Bj~E12) E121 we must have

( E 12\ = 
(B 11\ B 1E

‘ E ~ 1 11 12 ’
‘ 22~ ‘ 2l~

from which it follows that

Is -



- 28 -

(3.15) B (1 )B~~u F12)

The result now follows from Penrose’s conditions. n

It is interesting to observe that, from (3.15),

B22 - E22 = F~1 B~~F1.

which is of second order in L .  In other ~~rds , i t  ~~• ‘~-~~~ r :~~ ( ‘~

then P~ER~ must approach zero quadrat ical ly  a~ I: al~~ro.a- ~ ~
We turn now to the perturbation theor em.

Theorem 3.8.  Let B be an acute perturbation .‘~~. h~

K = ~~~

and let

1 I.
- K  > 0 .

Then

tt - Al B II ~ 
—

~~
-—

and

(3.16) B ~ + 
T

~~~ 
) + ( F )

where ~ is defined by (3.10) .

Proof. Let F . .  be defined as in Theorem 3 .7 .  Let

Is - - ---—
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121 — (Ir\), 112 
= Ur 0)

0

~2l 
(I\

~‘r 
F12)F21) 

‘ 
—

It follows from Theorem 2.2 that

hIBj~hl - b(A11+E11Y
111 

llAj~I! 
- bAt H

From (3.14), Bt = B 
- 1J~1, and from Lemma 3.612 11

bb B
tlh ~ II42Pl 2hJB~~hI D.41hh 2 ~ hIBj~h I h1A~hh

Now from (3.14)

(3.17) Bt~A
t 

= (.42-I~ 2)A~~I~1 + J ~(J~1-41) + 42 (B -A~~)41

From Theorem 2.2 we have the following bound :

-l~ ~ h1 E 1111
(3.18) h IJ~2(B~~-Aj~) ll s IA11 2 ~ 11A11!l

By Lemma 3.6

(3.19) II (J~2-42 )Aj~41ll s llAj~ l b 21142 -42 11

— llA~~Tl 24~ (F12)

lIA~~H 2’~p 
(B~~E12)

< lhAj~hl 29 
K 11E1211

— 
c~~~~~~llM~~~~~

’

1~I-
I
_ _  

_ _ _ _ _ _ _ _  

—-r- . — -

- - - -
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and likewise

(3.20) IhJ~2A~~(J~1-41)hl s IIA~~ll 24i,~(.~ 
~ 2lH

)

The bound (3.16) follows on combining (3.17) , (3.18) , (3.19) , and (3.20)

and remembering that lJAj~ hi I A ~I . ~

The bound (3.16) gives a rather nice dissection of Bt~A . Asympto-

tically, for F small, it reduces to the bound that would be obtained by

taking norms in (3.4) ; i.e.,

l~B
t_Atll K lIE11ll~ ’F12~I+IlE 21 Ib

h i A t i~ 
An

However, the bound additionally shows that and F21 can have at most

a bounded effect on b I B -A lb .

When A is square and nonsingular , E12 and 121 are void , and the

bound reduces to that of Theorem 2.2. Note that the number K , defined

in analogy with (2.17), plays an analogous role here.

Asymptotic forms and derivatives. Asymptotic forms for B may be

obtained from either (3.4) or (3.14). Of course for to approach At

we must have rank (A) = rank (B); and since we are assuming that £ is

arbitrarily small , by Theorem 2.5 we have that B is an acute perturbation

of A. In this case

Bt a At + o (! lF1l )

and

Is
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= BB~ a (A+E) [At+0(hhElh)J 
~A + O( (IE ll)

with similar expressions for the other proj ections . Hence from (3.4)

Bt At - AtPAERAAt 
+ (AHA) tR E H~~

(3.21)

- R~EHPA(AA
H) t + O( !1E 1 2)

It follows iim~ediately from (3.21) that if A(~) is a differentiable

function of ~ with

- rank [A ( ’ r) ] = rank [A (’r ’)]

for all ‘r, then A (t)
t is a differentiable function of ¶ and

dAt t dA t H t dAH
-

~~~~~
- -A 

~A ~~~ 
RAA + (A A) RA ~~

(3.22)

- R A~~~~ PA(AA )

The asymptotic form obtained from (3.14) can be useful computationally

when A has been put in reduced form as a prel imina ry to computing At .
We have from (3.21) that

~~ - A1~ 
- A~~E11A~ + O(lIE11ll 2)

From (3.13) in the proof of Lemma 3.6 we have

F I — ~‘ A~~E~1) + O (ffE11Il hIE21ll)

21/

Is
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and

(I F
12

) t = + O( lI E 11lll l E 12 ll )
l2~

k
ll j

Hence from (3.14)

- A E11A~ + O(llE11ll 2) ~A~1A11)
4E~1+ O (?lE11~~lE 21 )

(3.23) Bt = E~2(A11A~1)
1 + O(11E121111 E1211) ~~2(A~1A11A~1)

’F1
~1

+ O(llE
11 l! 2 HF12 !J 11 E 21

11)

This expression is in perfect agreement with (3.21) when the are

interpreted appropriately as projections of F.

Notes and references. For expository reasons the results of this

section have not been presented in the historical order of their development.

Penrose (1955) established Corollary 3.4 using techniques that do not give

explicit perturbation bounds. The subject was revived by Golub and Wilkin-

son (1966), whOse interest in stable algoritlins for solving least squares

problems [cf. Golub (1965)] led them to derive first-order perturbation

bounds for least squares solutions (more of this later). The first pertur-

bation bounds for the pseudo- inverse itself are given by Ben-Israel (1966),

who restricts his class of perturbations so that (in reduced form ) only

£11 is nonzero. More general theorems for acute perturbations were estab-

lished by Hanson and Lawson (l9S9), Pereyra (1969), and Stewart (1969).

Theorem 3.7 is a refinement and extension of Stewart ‘S bound .

Is - - - -



- 33 -

The decompositions (3.3) and (3.4) and the consequent Theorem 3.4

are due to Wedin (1973). Theorem 3.3 is a slight extension of these

results. Theorem 3.1 is also due to Wedin (1973), although a slightly

restricted form of the result may be found in Stewart (1969) . In an

earlier report Wedin (1969) considers the sharpness of the constants p.

in Theorem 3.4 and shows that for the spect ral norm p. cannot be made

smaller .

Early differentiability results have been given by Pavel-Parvu and

Korganoff (1969) and Hearon and Evans (1968). Wedin (1969) derived the

fornvla (3.22) as we did from the decomposition (3.4). The same result

for functions of several variables was derived independently by Golub

and Pereyra (1973) in connection with separable nonlinear least squares

problems. For further references see Colub and Pereyra (1975) .

4. Proj ections

In this section we shall consider how the projection 
~A 

varies with

A. Since = Mt it might be thought that the perturbation theory for

could be der ived from the theory developed in the last section

for At. However this approach gives too much away , and sharper bounds

may be obtained by working directly with one of the decompositions of B

In particular we shall, work with the decomposition (3.15) based on the

reduced forms of A and B.

If ~(A) and R (B) are not acute, then 
~~~~~~~ 

- 
~~• Consequently

we can restrict ourselves to the case where R (A) and R (B) are acute.

--
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More particularly we shall only consider the case where B is an acute

perturbation of A.

Theorem 4.1. Let B be an acute perturbation of A , and ~et K

and y be defined as in Theorem 3.8. Then

K 
11E 2111 2

~ h Alt 2(4.1) B~
’A1t 2 

~~ ~~~ 

11E 1 1
\
211/’ 

< 1

I ~~~ HA Il 2 / J
Proof. With F21 defined as in the last section we have [cf. (3.1~)}

/ 1
R ( B ) - R ~~ F21

The matrix

(~ 2l) 
(I+ F ~1F 21~~” (I F~1)

is a Hermitian idenpotent whose column space is R (B) ; hence it is

It follows that

(J+F~1F21)
4 

- I (I+F~1F21)~~F~1 \
(4.2) 

~B - 

~A 1~F21 (I+F~1F21) -l F.,1 (I+F~1 F21) _ l
~~ /

from which it is easily verified that

~ Is______ - -
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2 
F~1F21(I+F~1F21)

1 0

(4.3) 
~~~~~ 

—

0 F21 
(I+F ~1F21) _ 1

FH

Now the nonzero singular values of the diagonal blocks in (4.3) are given by

2

1 + a~(F21)

where the a. (F21) are the nonzero singular values of F21. The result

follows from the fact that the largest singular value a1 of F21 satisfies

K btE21lI2a1(F21) = lh F 21lh 2 ~ ~ ~AII,

In terms of projections, the bound (4.1) can be written in the form

p
itt, I

K A~’A2
~ flAIl 2

1~ ~( K lIP
~

ERAIl 2 ~
2 11/2

‘~ flAIl 2 / J
The bound is interesting in several ways. First it depends not at all on

E12 and E22. Second its dependence on E11 is only through the constant

y (in fact the term K/y can be replaced throughout by tBj~I I 2II A II 2). Third

the bound is always less than unity. Finally, it goes to zero along with

E21. We may st~iinarize this last observation in the following corollary .

Corollary 4.2.  Regarding B as variable , a sufficient condition for

liin PB a PAB~A

Is -
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is that rank (A) — rank (B) , IJA
tII 2IIPABRA II 2 ~ 6 < 1, and

u r n  P
~
BRA = O .

B-’A

Asymptotic forms and derivatives. Asymptotic forms may be obtained

in the usual way from (4.2). Indeed

/ O (11E2111 2) F1~1 
+ O(~E21tl 3)

~ (
\ F21 + O( 11E 21iJ ) O( 11E2111

In terms of proj ections

= 

~
‘A 

+ P
~

ERAA
t + AtHRAEHP~ + 0 (IIP~ER~II 2)

It follows that if A(-r ) is differ entiable and varies without changing rank,
then 

~A (~) is different iable and

dP t t dA(4.4) = p~ ~~~

_. RAA + A 
~ A ~~

Notes and references. Theorem 4.1 and its corollary appear to be new .

The expression (4.4) for the derivative of was first given by Golub and

Pereyra (1973).

5. The Linear Least Squares Problem

In this section we shall derive perturbation bounds for the least

squares problem of minimizing lb -Ax II 2. Although the solution of minimum

norm is given by x - Atb, the perturbation theory of §3 again does not give

the best possible results.

Is
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We shall assume throughout this section that B is an acute pertur-

bation of A , and we shall work with the reduc ed form of the problem.

In this form x is replaced by VHx and b is replaced by UHb (cf . ~2).

If x and b are partitioned in the forms

~~= (x1), b = (1 )
‘x 2 b2

where x1,b1 E C
r then

(5.1) x1 
= A~~b1

and

x2 = 0 *

Moreover the norm of the residual vector

r - b - Ax

is given by

11 11 2 = 11b 211 2.

In the theorems to follow we shall freely use the definitions made

in the previous sections [e.g. ,  K and y] .  One additiona l piece of nota-

tion will be needed; namely, we shall define ~ as that nonnegative constant

such that

11b111 2 — nIIA II 2I?x11 2

~~~~~~
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Sinc e b 1 = A11x 1, we have ~ s 1. Also I x t I ~ llA ’
~Il IIb 1lI , which shows that

fl ~ K . When A is ill-conditioned, that is when A is large , the

vector x may be either large or small. In the first case ~ is near

zero, and we shall say that “x reflects the ill-condition of A.”

We first consider perturbations in the vector b.

Theorem 5.1. Let x Atb and x + h At(b+k). Then

JIh~J 2 !PAk~2(5.2) 
~~~ 

K 

~ 
ffPAb

Proof. With the obvious partitioning of k we have h = Aj~k1, so that

(5.3) I I h! 1 2 ~ ] F A ~~I Il l k 1I I

But llx~ = n~~lIb1II2/IJA II 2, which combined with (5.3) yields (5.2). o

Theorem 5. 1 shows that the perturbation in x is determined by the

proj ection of k onto R(A) . However , PAk is normalized by PAb11 ,,

and if this latter quantity is small , the perturbation may be large. Since

11 b11 2 = I I P AbII 2 + ffr~~

this observat ion may be suninarized by saying that large residuals

are troublesome , a statement which will be amply supported later .

Since ~ can be as small as K
1
, the number K cannot be taken

as a condition number for perturbations in b without further qualification.

If x does not reflect the ill-conditioning of A , then ~ is near unity

and K is a condition number. Otherwise the solution will be relatively

insensitive to perturbations in b.

Is
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We next turn to assessing the effects on x of a perturbation in A.

Theorem 5.2. Let x = A~b and x + h = Btb, where B = A + E is an

acute perturbation of A. Then

I~hII 2 K 11E 1111 2 ~ 
K 11E 12 11 2 \ K

2 11E 21 11 2 ~ 
Hb 2 11 , ‘~~2 1 2(5.4) ‘

~T~1F ~ IJAll~ 
+ 

~2 I,~~~ 11AU2 )
4 

~~~ I A ~! , ~~~ b~T~2 
+ AJ!

2

Proof. Write

(5.5) h = Jj2(B~~ Aj~)b1 
+ (J~2-42)A~~b1 

+ J~2B~~(J~1-41)b

Then

(5.6) Ii42(Bj~-A~~)b1II 2 ~ 
~ 11E11H 2 11 X 11 2

and

(5.7) (J~2-42)A~~b1 2 ~ ~
‘2(~ 

~~~2)x 2

Now

= J~2B~~[(I÷F~1F21)
”-IJb 1

(5 .8)
+ J~2Bj~(I+F~1F21)

4F~1b2

To bound the first term in (5.8), note that (I+F~1F 21Y
1 

- I = - ( I +F ~1F21) 1F~1F 11.
Hence

Is - ~~~~~-
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[(I+F~1F21) 
- I] b1 11 2

~ IlB~~II 2lI (I+F~1F21) 
‘1iI2IIF~1Il 2IIF21b1lI 2

(5.9)

112 2 1 2  21 1 1 1 2

-l 2 2 1E21!1 2 2
5 I1B 1111 2IIE211I 21I x 1I 2 ~ tA ll 2 ] X11 2 *

For the second term in (5.8) we have

~J21B1~ (I4F~1F21) 
- 1F21b2 l~~

s !IB~~l l 2 IJE 21Il II b 2 Il
(5.10)

— 
-l 2 lb I!

• I lb 1TI 2 ~

K 
2 11E2111 2 IIb 2J~

~ (~ ) flAil 2 ~j*~
••
~ 

i x 11 2 -

The bound (5.4) follows on combining (5.5)-(S.l0). o

The first two terms in (5.4) are unexceptionable. The f i rs t  term

corresponds to the classical result for linear systems and is the only

nonzero term when A is square and nonsingular. The second term depends

°‘~ ~A’~A 
and vanishes when A is of full column rank, as it is in many

appl ica t ions.

The third term requires more explanation . I f term s of second order

in 1 2111 are ignored, this expression becomes essentially

2 l Ib II I lL II 2 l IE II
~ II b 1J! 2 J!A 11 2 

• ‘7~
) tan e 

HAll 2
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where 8 is the angle subtended by b and R(A ) . The number K
2

~~ tan

can vary from 0 to —. It is small when e is small (i .e.  the residua l

vector is small) . It is also reduced in size when x reflects the ill-

conditioning of A so that r~ K ’. When x does not reflect the ill-

conditioning of A and e is significant, it is of order K
2
, thus making

the third term in (5.4) the dominant one.

We have bounded the third term in the decomposition (5.5) in such a

way as to reflect its behavior when E21 is small. In fact it is bounded

for all values of E21, and the third term in (5.4) may be replaced by

K 11 b 11 2 ( K  
1IE 21

P !
2

Y jJ12 2~~Y flA~2

The residual. Since the residual vector is given by r = PAb , the theory

of §4 may be applied to give perturbation bounds for the residual. Specif i-

cally, if

~1’x =  B b

and

= b - B~ = PBb ,

* then

I!~ -r II 2 IPB-PA I 2rb~I 2

and 11
~ B~~A t1 2 can be bounded by (4.1) in Theorem 4.1.

Is



p -42 -

In applications one may not be interested in ~; rather one is

interested in the residual i of ~ with respect to the matrix A:

r = b - A ~~.

If we write

- r = (PB-PA)b -

then

lli*~rII 2 s l)PB-PA II2IIbII Z 
+ 1IE11 2112I12 *

Theorem 5.1 provides the necessa ry estimate of ~ .

If we concern ourselves with only the change in ri ’ 2 we can derive

a slightly stronger result. Since r is the minimizing residual , we have

li r ~2 ~ iiiil2. Likewise Ilb- (A+E)~!I 2 s lJ b - (A+E)x 11 2, from which it follows that

S Ii~~ ~ ~~~~~ + ~E I~2 (~ x H
2

+F I~~~2)

Asymptotic forms and derivatives. An asymptot ic form for the perturbed

least squares solution ~ can be obtained from (3.4):

- x - AtPAERAx - R~E
HPA (A

H
)
t

(5.12)
+ (AHA)tRAE

HP~b + O(!lF’!
2) *

An equivalent asymptotic formula , which may be usefu l in computational work ,

can be der ived from the reduced form (3.23) . The derivative formula corre-

sponsing to (5.12) is

Is - _______________________________
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a -A~P~ ~~ RAX - Rj~ 1’A (A
H)tx + (AHAf RA 1~~ 

PAb

An inverse perturbation theorem. Theorem 5.1 shows how a perturba-

tion in A can affect the least squares solution. Here we consider the

quest ion: given a vector ~ under what conditions is ~ the least

squares solution of a slightly perturbed problem? One such cond it ion is

given in the following theorem.

Theorem 5.2. Let ~ E ~~ be given. Let x = Atb, r = b - Ax , and

f = b - A L  If

2 2t l r II 2 = IIr H 2 + ~

then there is a matrix E of rank unity with

(5.13) IL l 2

such that JI b - (A+E)~ J J 2 is a minimum .

Proof. Let

e - f - r -  (x-~)E R (A) .

Since r E

~~2 2 211r11 2 — rI’ 2 + !~e~ 2 ,

which shows that II 0112 — e. Let

:!~~r
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E - -

11x 112
Then E satisfies (5.13) and R (E) c R (A) . Hence R (A+E) L R(A). But

b -  (A+E)~~— r E R(A)4

which shows that the residual b - (A+E)~ E R(A+E)~, and ~ solves the

required least squares problem. a

A consequence of this theorem is that there is little use hunting for

the exact minimizing x. Provided the residual is nearly minimal, the

approximate solution ~~, however inaccurate , is the exact solution of a

slightly perturbed problem.

It is sometimes desirable that the perturbation matrix E in Theor em

5.2 not alter some of the columns of A (e.g. a column may be dates in

years). This can be done as follows. Let ~ be the vector obtained from

~ by setting to zero the components corresponding to the columns that are

not to be disturbed . Then

- exH

2

is the required matrix. Of cours e Il
~

Il 2 < Ix JJ 2 so that Il
~

Ii 2 ? JE ll 2; however

h Ell 2 may still be small enough for practical purposes .

Notes and references. Moch of the pertur bation theory for pseudo-

inverses has been a byproduct of the search for bounds for the linear least

squares problem . Golub and Wilkinson (1966) gave a first order analysis

Is
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of the problem a~d were the first to note the dependence of the solution

on ic~~. Rigorous upper bounds were derived by Hanson and Lawson (1969) ,

Pereyra (1969), and Stewart (1969). Wedin (1969) also gives bounds. More

recent treatments have been given by Lawson and Hanson (1974) and Abdelmalek

(1974). Van der Sluis (1975) was the first to point out the mitigating

effect of r~ in (5.11).

The inverse perturbation theorem is new.

Is
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